Difference between revisions of "Hugin Camera and Lens tab"

From PanoTools.org Wiki
Jump to navigation Jump to search
(equirectangular lens)
Line 69: Line 69:
 
=== Vignetting ===
 
=== Vignetting ===
  
TODO
+
[[Vignetting]] is dependent mainly on your lens and the ''aperture''. Usually the
 +
centre of the image is brighter with a falloff towards the edges.  The three
 +
numbers here represent a polynomial curve used by [[hugin]] to correct vignetting.
 +
 
 +
You are not expected to guess these values, they are generally loaded with a lens
 +
profile or calculated from two or more overlapping photos in the [[hugin Exposure tab]].
 +
 
 +
Set the values to ''0,0,0'' for no vignetting correction.
 +
 
 +
Usually all photos taken with the same ''lens'' will have the same vignetting, keep
 +
'''Link''' checked to ensure '''hugin''' applies the same vignetting correction to all
 +
photos with the selected lens number.
 +
 
 +
=== Vignetting Center Shift ===
 +
 
 +
The centre of [[vignetting]] is rarely the exact centre of the photo. The two numbers
 +
here indicate the position of the vignetting centre. The scale is in pixels, with
 +
''0,0'' indicating the centre of the photo (TODO is this relative to the d & e parameters?)
 +
 
 +
As with other lens parameters, this '''Vignetting Center Shift''' can be optimised in
 +
the [[hugin Exposure tab]].  Keep '''Link''' checked to ensure [[hugin]] applies the same
 +
vignetting centre to all photos with the selected lens number.
  
 
=== Camera Response ===
 
=== Camera Response ===
  
TODO
+
The [[camera response curve]] is used both for mapping the images to a linear
 +
colourspace when creating [[HDR]] output, and for normalising the colourspace
 +
for internal vignetting, brightness and colour corrections when creating
 +
'normal' '''LDR''' output.
 +
 
 +
[[hugin]] uses the [http://www1.cs.columbia.edu/CAVE/projects/rad_cal/rad_cal.php EMoR response model]
 +
from the Computer Vision Lab at Columbia University which simplifies the full
 +
response curve to these five empirical coefficient numbers.  You are
 +
not expected to guess these values, they are generally loaded with a lens
 +
profile or calculated from two or more overlapping photos in the [[hugin Exposure tab]].
 +
 
 +
Set the five numbers to ''0,0,0,0,0'' to use a generic response curve or change the '''Type'''
 +
to '''Linear''' to indicate that your input photos have a ''scene-referred'' or [[HDR]]
 +
response.
 +
 
 +
Keep '''Link''' checked to ensure '''hugin''' applies the same
 +
response curve to all photos with the selected lens number.
  
 
__NOTOC__
 
__NOTOC__
 
[[Category:Software:Hugin]]
 
[[Category:Software:Hugin]]

Revision as of 00:33, 10 June 2007

The Camera and Lens tab looks a lot like the hugin Images tab, except that the lens settings can be edited here. As in the Images Tab, multi-selection can be used to change the parameters for multiple images.

Panorama Tools and hugin allow the usage of images shot with different lenses and settings inside the same project. Each image is associated with a lens number. All images that share the same lens number use the same lens type, and may be forced to share the same lens parameters.

The Load lens... and Save lens... buttons allow you to keep calibrated lens profiles. Once a set of lens parameters has been obtained through lens calibration it shouldn't vary much for future projects. The advantage of this is that if only positions are being optimised in the hugin Optimizer tab, then as few as two or three control points are needed per image pair.

Load EXIF examines the selected image file and tries to determine the Field of View of the photo by reading embedded EXIF data, note that this currently only works for JPEG images. The same function is performed when initially adding photos so you only need this button to reset the Field of View if it has since changed.

By default, every photo in a project is assigned to lens number 0. If you are including pictures taken with a different camera, a different lens or at different zoom settings; then you need to assign a new lens for these pictures by clicking the New Lens button. Assign additional photos to this lens number with the Change Lens... button.

Geometric

The Panorama Tools lens correction model has enough parameters to model most photographic images, these parameters can be set manually here in the hugin Camera and Lens tab or calculated automatically in the hugin Optimizer tab.

Lens

The most important parameters are the Lens type and the hor. field of view. hugin supports the following projections in input images:

  • rectilinear This is the projection used by most cameras. It keeps straight lines straight. The maximum horizontal field of view is 180 degrees (for an image of infinite size, that is).
  • Panoramic is used by panoramic cameras, such as the Horizon, Roundshot and Spheron cameras. This projection is also called Cylindrical Projection.
  • Circular fisheye This is projection is used by fisheye lenses. If the image is circular, or the corners of the image are black, use this type of fisheye lens. A circular crop in the Hugin Crop tab can be used for cutting away the edge borders.
  • Full frame fisheye Exactly the same projection as above, but the crop option will crop to an rectangle instead of a circle. This should be used for full frame fisheye images.
  • Equirectangular A full spherical Equirectangular Projection image. Usually these are created as the result of the stitching process, but sometimes it is useful to be able to reload a finished panorama to extract further images.

After the lens type has been specified, an estimate for the horizontal Field of View (HFOV) is required. The HFOV specifies the horizontal opening angle of the image in degrees. Since most photographers are more familiar with Focal Length as a measure for the HFOV, it can be entered into hugin, and hugin will compute the HFOV from it. For this calculation the actual focal length and the crop factor of the camera are required. If the 35mm film equivalent focal length is known, a crop factor of 1 should be used.

In case of JPEG images, hugin can usually automatically calculate the HFOV based on the EXIF information.

Radial Distortion, Image Center Shift and Image Shearing

Usually lenses do not project images exactly according to the selected projection type, but suffer from distortions. In many cases the distortions are acceptable for single image shots, but they need to be corrected when stitching a panorama. The a, b and c parameters are used to remove that distortion. They are applied radially from the image center, which can be moved by changing the d and e parameters. These a, b, c, d and e parameters are the basis of the panotools lens correction model.

Scanned images might also suffer from image shearing. This can be corrected using the g and t parameters.

The distortion parameters usually vary with the focal length, and to a lesser degree with the focus. The link checkbox indicates whether the parameter is linked or not. A linked parameter is forced to the same value for all images with the same lens number. This is the default for the HFOV and distortion parameters. If a parameter is not linked each images is allowed to have individual values for the respective parameter. This is useful if a different zoom or focus setting has been used for some images. If scanned images are used, they are usually not perfectly centered, and each image should have individual d and e parameters.

Photometric

hugin models the photometric parameters of a lens/camera combination in a similar way to the lens correction model for Geometric parameters. These parameters can be set manually here in the hugin Camera and Lens tab or calculated automatically in the hugin Exposure tab.

Exposure and Color

TODO

Vignetting

Vignetting is dependent mainly on your lens and the aperture. Usually the centre of the image is brighter with a falloff towards the edges. The three numbers here represent a polynomial curve used by hugin to correct vignetting.

You are not expected to guess these values, they are generally loaded with a lens profile or calculated from two or more overlapping photos in the hugin Exposure tab.

Set the values to 0,0,0 for no vignetting correction.

Usually all photos taken with the same lens will have the same vignetting, keep Link checked to ensure hugin applies the same vignetting correction to all photos with the selected lens number.

Vignetting Center Shift

The centre of vignetting is rarely the exact centre of the photo. The two numbers here indicate the position of the vignetting centre. The scale is in pixels, with 0,0 indicating the centre of the photo (TODO is this relative to the d & e parameters?)

As with other lens parameters, this Vignetting Center Shift can be optimised in the hugin Exposure tab. Keep Link checked to ensure hugin applies the same vignetting centre to all photos with the selected lens number.

Camera Response

The camera response curve is used both for mapping the images to a linear colourspace when creating HDR output, and for normalising the colourspace for internal vignetting, brightness and colour corrections when creating 'normal' LDR output.

hugin uses the EMoR response model from the Computer Vision Lab at Columbia University which simplifies the full response curve to these five empirical coefficient numbers. You are not expected to guess these values, they are generally loaded with a lens profile or calculated from two or more overlapping photos in the hugin Exposure tab.

Set the five numbers to 0,0,0,0,0 to use a generic response curve or change the Type to Linear to indicate that your input photos have a scene-referred or HDR response.

Keep Link checked to ensure hugin applies the same response curve to all photos with the selected lens number.