Difference between revisions of "DSLR spherical resolution"

From PanoTools.org Wiki
Jump to navigation Jump to search
m (linked)
 
(18 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
 
{{Glossary|What [[spherical]] panorama resolution can I obtain from a certain [[fisheyes|fisheye]]/camera combination.}}
 
{{Glossary|What [[spherical]] panorama resolution can I obtain from a certain [[fisheyes|fisheye]]/camera combination.}}
 
==Intro==
 
==Intro==
In general photography megapixels are more or less synonymous to resulting image resolution. Panorama photography is a bit different, especially spherical panoramas. Here the sensor pixel density is more important than the sensor pixel count.
+
In general photography megapixels are more or less synonymous to resulting image resolution. Panorama photography is a bit different. Here the sensor pixel density is more important than the sensor pixel count.
 +
 
 +
==Cameras==
 +
Digital Single Lens Reflex (DSLR) cameras exist in four major groups:
 +
* With [[#FourThirds|FourThirds]] sensor (crop factor 2.0)
 +
* With an [[#APS-C|APS-C]] type sensor (crop factor 1.5 or 1.6)
 +
* With [[#APS-H|APS-H]] type sensor (crop factor 1.3)
 +
* With a sensor of the [[#Full size|full 35mm film size]] (crop factor 1.0)
 +
 
 +
In each size category there are several cameras with different sensor resolutions. And there are several lenses that can be attached to cameras with different sensor sizes.
  
==The Problem==
+
== Pixel density ==
Digital Single Lens Reflex (DSLR) cameras exist in three major groups:
+
To deduce the pixel resolution obtainable by a certain sensor/lens combination we should know the density in pixels/mm of the respective sensor. The pixel density can be calculated roughly from the Megapixels and the sensor size.  
* With FourThirds sensor (crop factor 2.0)
 
* With an APS-C type sensor (crop factor 1.5 or 1.6)
 
* With a sensor of the full 35mm film size (crop factor 1.0)
 
  
In each size category there are several cameras with different sensor resolutions. And there are several lenses that can be attached to cameras with different sensor sizes. To have the effects of different lenses comparable the concept of a 35mm equivalent focal length has been established - the real focal length multiplied with the crop factor gives the same [[Field of View]] like for a 35mm film camera.  
+
You get the exact pixel density by dividing the sensor size in pixels by the corresponding size in mm.
  
However, this is not possible for [[fisheyes|fisheye]] lenses, since the [[Focal Length]] does not correspond linearly to the [[Field of View]]. One has to look at the degree/mm ratio and absolute pixel density instead.
+
For the four major groups and some typical Megapixel sizes:
  
==Degree/mm==
+
=== FourThirds ===
In the [[Fisheye Projection]] an angular distance from the optical axis maps to a linear distance on the sensor. The mapping is determined by the focal length (the following numbers are approximations, since real fisheyes almost never resemble the ideal fisheye mapping):
+
with 13.5mm short side
 +
Megapixel          6      8      10      12      16      20
 +
Short side px  2121    2450    2739    3024    3460    3900
 +
px/mm            157    181    203    232    260    290
  
* 8mm focal length 7.2°/mm
+
=== APS-C ===
* 10.5mm focal length 5.5°/mm
+
with 16mm short side             
* 16mm focal lenght 3.6°/mm
+
Megapixel          6      8      10     12    15      20      24      28
 +
Short side px  2000  2309    2582    2828  3160    3650    4000    4320
 +
px/mm           125    144    161    177    197    228    250    273
  
== Pixel density ==
+
=== APS-H ===
To deduce the pixel resolution obtainable by a certain sensor/lens combination we should know the density in pixels/mm of the respective sensor. The pixel density can be calculated roughly from the Megapixels (better would be actual pixel size) and the sensor size. For the three major groups and some typical Megapixel sizes:
+
with 19mm short side             
 +
Megapixel          8      10      16
 +
Short side px  2336    2592    3264
 +
px/mm           123    137    172
  
FourThirds with 13.5mm short side
+
=== Full size ===
  Megapixel       6      8       10
+
with 24mm short side
  Short side px  2121   2450   2739
+
  Megapixel         6      8     10     12      16      21      24      28      36      42      46
  px/mm           157     181     203
+
  Short side px  2000    2309    2582    2828    3266    3742    4032    4320   4900   5300    5500
 +
  px/mm             83      96    108    118    136    156    168    180    204     220     229
  
APS-C  with 16mm short side             
+
==Lenses==
Megapixel      6      8      10      12
+
To determine the angular resolution we need the ratio between the angular distance as seen by the camera and the physical distance on the sensor. This ratio depends on the angular distance <math>\theta</math> from the optical axis for all projections but the equidistant fisheye. Luckily at the optical axis <math>(\theta = 0)</math> all [[Fisheye Projection|projection formulas]] converge to the equidistant projection <math>R=f\cdot\theta</math> The angle <math>\theta</math> is expressed in radians, which gives an angular mapping of <math>\textstyle {\Delta R\over\Delta\theta}=f</math>
Short side px  2000  2309    2582    2828
 
px/mm          125    144    161    177
 
  
Full size with 24mm short side
+
In simple words: The angular mapping in mm/radians equals the focal length in mm in the image center. The actual mapping is not relevant, the formula applies equally to all kinds of fisheyes as well as to normal (rectilinear) lenses.
Megapixel      6      8      10      12      16      21
 
Short side px  2000    2309    2582    2828    3266    3742
 
px/mm           83      96      108    118    136    156
 
  
 
== Pano sizes ==
 
== Pano sizes ==
From the above values we can easily calculate some sample panorama resolutions. The table gives some rounded values for the maximum pixel size of an equirectangular:
+
From the above values we can easily calculate some sample panorama resolutions. The table gives some rounded values for the maximum pixel width of an equirectangular (<code>f</code> = focal length, <code>MP</code> = Megapixel):
 +
 
 +
FourThirds MP      -      -      -      -      6      7      8      10      12      -      16      20
 +
APS-C      MP      -      -      6      8      10      11      12      15      20      -      24      28
 +
APS-H      MP      -      -      8      10      -      16      -      -      -        -      -      -
 +
Full size  MP      6      8      12      16      21      24      28      36      42      46      -      -<b>
 +
pixel/mm          80    100    120    140    160    170    180    200    220    230    260    280</b>
 +
f=5.6mm  width  2820  3520    4220    4920    5280    5980    6340    7040    7740    8100    9140    9860
 +
f=8mm    width  4020  5020    6040    7040    7540    8540    9040  10100  11100  11600  13100  14100
 +
f=10.5mm width  5280  6600    7920    9240    9900  11200  11900  13200  14500  15200  17200  18500
 +
f=12mm  width  6040  7540    9040  10560  11300  12800  13600  15100  16600  17300  19600  21100
 +
f=16mm  width  8040  10060  12100  14100  15100  17100  18100  20100  22100  23100  26100  28100
  
FourThirds MP  -      -      -      -      6      8      10 
+
The formula for an exact calculation is <math>\text{width} = {\text{px}/\text{mm}} \cdot \text{f} \cdot 2\pi</math>
APS-C      MP  -      -      6      8      10      12      -
 
Full size  MP  6      8      12      16      21      -      -
 
pixel/mm       80      100    120    140    160    180    200
 
f=8mm    size  4000    5000    6000    7000    8000    9000    10000
 
f=10.5mm size  5200    6500    7900    9200    10500  11800  13100
 
f=16mm  size  8000    10000  12000  14000  16000  18000  20000
 
  
The formula for an exact calculation is <math> \frac {pixel/mm} {degree/mm} *360 </math>
+
with <math>\text{f}</math> = focal length, <math>\text{px}/\text{mm}</math> = [[#Pixel density|pixel density]], <math>2\pi</math> = full circle. This is the exact same formula that f.e. [[PTGui]] uses.
  
<small>--[[User:Erik Krause|Erik Krause]] 22:11, 21 August 2007 (CEST)</small>
 
 
[[Category:Tutorial:Nice to know]]
 
[[Category:Tutorial:Nice to know]]
 
[[Category:Glossary]]
 
[[Category:Glossary]]

Latest revision as of 19:59, 4 January 2019


Intro

In general photography megapixels are more or less synonymous to resulting image resolution. Panorama photography is a bit different. Here the sensor pixel density is more important than the sensor pixel count.

Cameras

Digital Single Lens Reflex (DSLR) cameras exist in four major groups:

In each size category there are several cameras with different sensor resolutions. And there are several lenses that can be attached to cameras with different sensor sizes.

Pixel density

To deduce the pixel resolution obtainable by a certain sensor/lens combination we should know the density in pixels/mm of the respective sensor. The pixel density can be calculated roughly from the Megapixels and the sensor size.

You get the exact pixel density by dividing the sensor size in pixels by the corresponding size in mm.

For the four major groups and some typical Megapixel sizes:

FourThirds

with 13.5mm short side

Megapixel          6       8      10      12      16      20
Short side px   2121    2450    2739    3024    3460    3900
px/mm            157     181     203     232     260     290

APS-C

with 16mm short side

Megapixel          6      8      10      12     15      20      24      28
Short side px   2000   2309    2582    2828   3160    3650    4000    4320
px/mm            125    144     161     177    197     228     250     273

APS-H

with 19mm short side

Megapixel          8      10      16
Short side px   2336    2592    3264
px/mm            123     137     172

Full size

with 24mm short side

Megapixel          6       8      10      12      16      21      24      28      36      42      46
Short side px   2000    2309    2582    2828    3266    3742    4032    4320    4900    5300    5500
px/mm             83      96     108     118     136     156     168     180     204     220     229

Lenses

To determine the angular resolution we need the ratio between the angular distance as seen by the camera and the physical distance on the sensor. This ratio depends on the angular distance from the optical axis for all projections but the equidistant fisheye. Luckily at the optical axis all projection formulas converge to the equidistant projection The angle is expressed in radians, which gives an angular mapping of

In simple words: The angular mapping in mm/radians equals the focal length in mm in the image center. The actual mapping is not relevant, the formula applies equally to all kinds of fisheyes as well as to normal (rectilinear) lenses.

Pano sizes

From the above values we can easily calculate some sample panorama resolutions. The table gives some rounded values for the maximum pixel width of an equirectangular (f = focal length, MP = Megapixel):

FourThirds MP      -      -       -       -       6       7       8      10      12       -      16      20
APS-C      MP      -      -       6       8      10      11      12      15      20       -      24      28
APS-H      MP      -      -       8      10       -      16      -       -       -        -       -       -
Full size  MP      6      8      12      16      21      24      28      36      42      46       -       -
pixel/mm          80    100     120     140     160     170     180     200     220     230     260     280
f=5.6mm  width  2820   3520    4220    4920    5280    5980    6340    7040    7740    8100    9140    9860
f=8mm    width  4020   5020    6040    7040    7540    8540    9040   10100   11100   11600   13100   14100
f=10.5mm width  5280   6600    7920    9240    9900   11200   11900   13200   14500   15200   17200   18500
f=12mm   width  6040   7540    9040   10560   11300   12800   13600   15100   16600   17300   19600   21100
f=16mm   width  8040  10060   12100   14100   15100   17100   18100   20100   22100   23100   26100   28100

The formula for an exact calculation is

with = focal length, = pixel density, = full circle. This is the exact same formula that f.e. PTGui uses.